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INTRODUCTION

The U S. Army has been engaged in the search for intensive munitions for guns
in tanks and self-propelled nowi 7.rs Liquid Propellants have been categorized as an
intensive munition (ref I a-d aire prc-*v under consideration as a potential replace-
ment of solid propellants Trie log:stcai. ballistic, and cost savings feature propellant
prompted an extensive program for their characterizations. The integrity of these
propellants, after being stoied icr extended periods of time, is required to assure that
the ballistic parameters are met. In order to establish these criteria, long-term storage
studies of liquid propellants are requireo to determine their stability and storability.

The use of liquid propellants as a replacement for solid propellants in diverse gun
applications necessitates extensive characterization of the propellant system. This
requirement has reSUlted in the necessity to develop analytical techniques that will
establish the capability to monitor tie composition of liquid propellants during storage.
Some of the important features which were considered for candidate techniques in-
cluded reproducibility. re!iabllity simpliciivy safety, and environmental impact.

The propellant systems currently under investigation are stoichiometric mixtures
of hydroxylammonium nitrate (HAN) with an alkyl ammonium nitrate in water. The
alkylammonium nitrate which is being considered at present is triethanolammonium
nitrate (TEAN) A typical composition called LP 1846 has 61% HAN, 19% TEAN, and
20% water. The molar ratio of this mixture is 7:1 for HAN to TEAN which is
stoichiometric for conversion to the desirable products of combustion of carbon dioxide,
water, and nitrogen.

The knowledge of the aging effects of the basic liquid propellant constituents and

stability when exposed to contaminants during long-term storage is essential. This
information is critical since any significant deviation in the basic propellant formulation
will result in a loss in ballistic performance and propellant lifetime as well as causing
potential safety problems. Therefore, it is necessary to determine the effects of tem-
perature and contaminants on the stability of liquid propellants and provide analytical
techniques to monitor the gas and liquid phase compositions before and after exposure.

Analyses are required to both identify and quantify major propellants, con-

taminants, and degradation products in order to provide a basis for desired criteria.
Low level concentrations of contaminants or impurities which have been detailed previ-
ously (ref 2 and 3) such as ammonium nitrate (AN), nitric acid, morpholines, hydrazines,
nitrosoamines, nitrogen oxides, nitro.len, and trace amounts of transition metal ions can
be expected to be found.



EXPERIMENTAL

Chemicals

LP 1846 propellant was prepared by Thiokol Chemical Corp., Elkton, MD and
supplied by BRL, Aberdeen, MD.

The hydrochloride derivates of HAN and TEAN were purchased from Aldrich
Chemical Co., Milwaukee, WI.

The high purity solvents and regeants are commercial products. Ethanol
(Pharmco, NJ). sodium hydroxide, methanol, and acetone (Fisher, NJ).

The tetrabutylammonium hydroxide is a commercially avaliable titrant in men-
thanol (Aldrich Chem Co.).

Titrators

The potentiometric titrations were carried out on a Metrohm potentiograph Model
E-536 and a Model 655 Metrohm Dosimat.

RESULTS

Several of the analyses have received considerable attention due to their com-
plexity and necessity for accurate results. The determination of both free nitric acid and
of hydroxylammonium nitrate (HAN) and triethanolammonium nitrate (TEAN) is an area
that has provided some difficulty. In-depth investigations of the use of titrimetry as well
as alternative techniques such as ion chromatography (IC) and supercritical fluid
chromatography (SFC) have been conducted.

A titrimetric method developed by Dr. Kasler at the University of Maryland was
reviewed as a potential technique for HAN/TEAN analysis (refs 4 and 5). Methyl
isobutyl ketone was used in this method to convert HAN to a stronger acidic product,
nitric acid. TEAN, a weak acid, is not affected by the ketone and is easily differentiated
in the "tation curve. The actual titration is based on the nitric acid liberated during the

formation of an oxime, a very weak acid (Kb <10 - 2) which is not titrated.

H 3NOHNO 3 + R2C=O---> R2C=NOH + HNO 3 = H20 (1)

HAN Oxime



HAN based liquid propellants can undergo decomposition as a result of the
presence of various contaminants such as nitric acid and transition metals with forma-
tion of numerous products some of which are shown in equation 2:

aH3NOHNO 1 -- > bHNO3 + cNO +dN 2 + eH20 + fNH 4 NO 3 + Z (2)

The actual mechanism for liquid propellant decomposition proposed in equation 2 will
be established by gas and liquid phase analyses of experimentally aged samples. Nitric
acid formation during decomposition poses a serious problem in the stability of the
liquid propellant and must be accurately monitored. "Free" nitric acid can be introduced
as a product of decomposition or from production as a residual contaminant. Therefore,
this titrimetric method will result in erroneously high HAN values in samples with signifi-
cant decomposition or with residual acid from production. As a result, a capability was
required to differentiate free nitric acid separate from nitric acid produced from
Keytone/HAN reaction. This was accomplished by performing two titrations. The
keytone was eliminated from the sample solvent permitting the HAN to remain un-
changed. The free nitric acid from HAN to remain unchanged. The free nitric acid from
HAN decomposition or propellant production could then be titrated. This is impossible
since the HAN and TEAN which are very weak acids from one break in the titration
curve after the stronger, free nitric acid break. Tetrabutylammonium hydroxide of 0.01 N
in methanol was used as the titrant with 50 ml of ethanol as the sample solvent. In
order to provide the necessary accuracy for concentrations of HNO 3 <0.5%, an 0.6-
gram sample was chosen; and for concentrations of HNO, >0.5%, an 0.3-gram sample

was required (refs 2 and 3). Finally, the HANiTEAN could be determined in a seperate
titration with addition of keytone to the sanple solvent for HAN conversion.

A comparison of the aqueous versus nonaqueous free nitric acid titrations led to
the selection of the nonaqueous method. The overall standard deviation of the aqueous
was >+0. 02 and for the nonaqueous <+0. 02 (tables 1 and 2). The titration curves for
the nonaqueous method were more sensitive. The choice of sample weight was also
critical. In keeping with acceptable titration techniques as prescribed by numerous
authors as well as safety and environmental directives, sample size was kept minimal.
The effect of sample concentration is vividly expressed in figure 1 where percent
recovery is dramatically reduced as sample concentration is increased. The calcula-
tions for figure 1 were made without suotraction of the solvent blank in order to show the
effect of large samples The actual recovery of nitric acid added (table1) is a complete
loss or zero recovery with sample sizes greater than one gram

The choice of methods for this study was restricted by sample quantities avail-
able, safety regulations, directives to reduce waste and sample usage, and analytical
methods had to be tailored to comply with these restrictions.



The original HAN/TEAN method by Kasler produced titration curves which
produced breaks that were not sufficiently discernible for the accuracy required for this
program. In this study, first derivative curves were used to provide more easily defined
end points. Acetone was substituted for the higher keytones used by other investigators
(refs 3 and 4) for conversion of HAN to nitric acid which led to smoother and better
defined titration curves. Pre-addition of titrant was used to reduce analysis time and
provide accurate data. The sample size (0.6 g) was within accepted levels for ionic
strengths of less than 0.1 (eqs 5 through 7), but sufficient for the desired accuracy and
precision. Several titrants were tested, and tetrabutyl ammonium hydroxide (TBAH)
was found to be applicable to both nitric acid and HAN/TEAN analyses. The prefered
titrant for free nitric acid from degradation and production was n-butylamine in
methanol, but the use of both titrants was not pursued. It was expedient to use only one
titrint since both gave comparable results. The titrant for the HAN/TEAN analytical
method is 0.2N TBAH in methanol. The sample size is 0.6 g with pre-addition of 15.0
ml of titrant in 50 ml of ethanol/acetone (100:1) (refs 2 and 3).

Blank values were determined for all reagents. The effect of the reagent used as
a diluent or solvent was in some cases quite significant. A tabulation of these data are
shown in table 3. Calculation of the blank as nitric acid shows that a significant error
would be introduced in the case of ethanol 2.

The aqueous system was compared to nonaqueous titration of two liquid propel-
lant lots (table 4 ) and of synthetic lot using hydrochloride standards (table 5). Both
LP-2 and LP-3 were specification grade mixtures containing 60.8+ 0.5% HAN. As a
result, the data in table 4 indicate that the nonaqueous titration provides more realistic
results. This is also confirmed with the data in table 5. In this case, pure hydrochloride
standards were used to prepare solutions containing the same amount of cation
(hydroxlyamine or triethanolamine) which would be present in the nitrate solutions of LP
1846. Again, the nonaqueous determination resulted in closer agreement with actual
concentration of HAN. The only interesting observation in the TEAN comparison is that
the aqueous titration results in higher TEAN (TEAC1) concentrations. This may be due
to unreacted HAN (HAC1) which would account for low HAN values. If the effect of
molecular weight from equation 3 is considered, any unreacted HAN (MW=96) would
have more than a two-fold effect on increasing the percent TEAN (MW=212) detected.
Considering the role of molecular weight in the titrimetry calculations, the presence of a
species of lower molecular weight would increase the calculated amount detected (eq
3). For example, a weight of 80 versus TEAN with a molecular weight of 212 would
effectively increase the TEAN concentration detected due to its presence by more than
twice the amount.

%X = (100) [(mls titrant) (N titrant) (MW/1 000)]
Sample weight, grams (3)



In order to provide an analytical capability, an overall review and understanding
oi the basic principals of the methods employed is necessary. One of the approaches,
titrimetry, which has been chosen for characterizing the major components and the
nitric acid contaminant in liquid propellants is one of complex dimensions. Titrimetry in
either aqueous or nonaqueous media is often neither simple nor well defined and must
be used with an understanding of its limitations. For this particular application, nona-
queous potentiometric titrimetry was selected for reasons which will be enumerated.

The selection of nonaqueous over aqueous titration methods provides increased
sensitivity of weak acidic species such as TEAN. That is, the amplitude of the derivative
curve is greater and much sharper. By careful observance of titrant and solvent effects
and the increased sensitivity of nonaqueous media, it was possible to qualitatively and
semiqualitatively distinguish between weakly acidic species, TEAN an AN. This charac-
teristic has been observed by others in ethanol and other nonaqueous media (ref 6).

To be consistent with general practices set forth by numerous investigators, a
dilute system was considered as an optimum approach with ionic strengths less than
0.1 (ref 7). These criteria are fulfilled by both nonaqueous methods which were devel-
oped (eqs 5 through 7). Concentrated solutions create large changes in activity coeffi-
cients and buffering affecting the shape of the titration curves (refs 6 and 8) which was
evidenced in recent studies of percent recovery of nitric acid with sample size (fig. 1).
Since buffering capacity is the property of a solution to resist pH change, it is requisite
to reduce buffering power through dilution especially in analyses which require monitor-
ing traces or slight changes. Evidence of buffering as a result of concentrated samples
is illustrated in the derivative curves of figures 2 through 5. A standard symmetrical
nonaqueous titration is shown in figure 2; the effect of a larger sample in which the
curve becomes very noisy and shallow in figure 3; and the effect of increasing sample
size using the aqueous method whose curves are asymmetrical in figure 4. As sample
size was increased, the curve became increasingly shallow and eventually indiscer-
nible. Figure 5 is an aqueous titration with a very large sample (-30 grams) in which
the curve is measurable but very noisy and asymmetrical. The agreement obtained
between the aqueous and the nonaqueous methods may have been coincidental. It
was a deviation from the other concentrated samples which were tried since a discern-
ible break was observed. Nevertheless, the more reasonable approach is with small
samples.

Using classical associations and definitions, the following relationship exists
between pH and pK values:

pH = pKa + log (Ab/Aa) if Aa = Ab, pKa = pHk (4)
where Aa andAb are activities (- concentrations).

Since Aa = Ab is approximately fulfilled by V E/2, the point K on the curve can be easily

determined resulting in the appropriate pHk form which the corresponding pKa can be



found (fig. 6). Although the pKa determined in this manner is not exact, it is sufficient
for this comparision. The buffering capacity, b, is a differential quantity and can be
determined by drawing a tangent to the titration curve (fig. 7). The buffering capacity
can also be calculated as b = DV (equiv/L) /Dph. The more symmetrical the curve, the
more distant b is from the end point. Titrations were run using titration techniques
currently being employed for HAN-based propellants (figs. 7 through 10). Calculations
are shown below for several of the aqueous and nonaqueous titration S-curves of LP
1846-03-11 from figures 7 through 10:

End point Start
Method ml pH b pK %HNO 3  %HAN pH
Aqueous 0.50 2.08 0.28 1.92 0.03 1.80
Nonaqueous 1.50 2.17 0.019 1.79 0.07 1.54
Aqueous 15.53 5.04 0.24 1.90 60.29 1.09
Nonaqueous 13.62 13.15 0.44 -0.3 60.91 -0.35

The data from these calculations show the consistency of this set for percent detected.
The most significant observation is the value for the buffering capacity. For HAN
analysis, both methods use -0.5 grams and are similar. But, for the titration of nitric
acid, there is a very large difference in buffing capacity which would make the aqueous
method more susceptible to error. This larger buffering capacity is the function of the
larger sample size, 20 to 30 grams versus the smaller sample for nonaqueous method
(0.5 g).

Based on the optimized nonaqueous titrimetry technique, ionic strengths can be
calculated to determine conformity with accepted practices. The molarities and there-
fore ionic strengths which were used for this study for liquid propellant, LP 1846, con-
taining HAN at 8.94 M and TEAN at 1.34 M are as follows:

Using 0.6 gram of LP or 0.42 ml at a density of 1.42,
HAN = ml [M/ (1000 ml/L) = 0.00375 moles
TEAN = 0.00056 moles (5)

Diluted in 50 ml,
HAN = [(moles x 1000 ml/L) /ml] = 0.074 M (6)
TEAN =0.011 M

Ionic strength, .,

p = 1/2 L .z = 0.085 (7)



In the concentrated systems, the curves are more asymmetrical (figs. 2 through
10) which are a function of the buffering capacity maximum, b, being close to the titra-
tion end-point. In the symmetrical curves from the dilute systems, the maximums are
far removed from the end-point.

Another illustration of buffering as expressed by Kolthoff and Sandell states that
in any weakly acidic solution, HA, the equilibrium is determined by the magnitude of the
ionization constant:

[H'] [A] HA] = Ka (8)
and

[H'] ={[HA]/[A]} x Ka

If a ,nixture of a weak acid and its salt (KA) is considered, it is a strong electrolyte. The
concentration of A ions sent into solution by the salt is practically equal to the molecular
concentration of the salt which represses the dissociation of the acid, HA, since it
furnishes the common ion A . Frequently, this repression is so great that all of the acid
present can be considered to be in the undissociated form (ref 8).

During the course of this investigation, it was observed that the break in the
titration curve for AN, EAN, and DEAN, which are also weak acids, are not resolved
from TEAN. Since these contaminants could have a large impact on the TEAN deter-
mination, an alternative method for TEAN is necessary. Due to the observed limitations
of titrimetry, ion and supercritical fluid chromatography are being investigated for the
analysis of HAN, TEAN, EAN, DEAN, and AN. This does not preclude the use of
titrimetry. Potentiometric titrimetry appears to provide accurate HAN analysis and an
indication of other contaminants in the titration break for TEAN when a first derivative
output is used. The use of titrimetry will be used until such time that either IC or SFC or
both are optimized. Both IC and SFC instrument manufacturers * were consulted on the
above-mentioned analyses which has resulted in feasible approaches for further inves-
tigation. One of the important considerations which led to SFC was environmental
impact and waste u:sposal.

J. Krol, Waters Division of Millipore, 1988
M. Ashraf-Khorassani of Suprex Corporation. 1989



A capability was developed on IC to separate HAN, TEAN, DEAN, EAN, and AN.
Current investigation is in progress to determine the precision and accuracy of this
technique. Preliminary results indicate that IC is a viable method. An IC-Pak TM
column and conductivity detector were used for the separation and detection. A 20 to
100 !.l size sample of diluted liquid propellant (3/5000 in water) was injected using 1 to 4
mm HNO 3/0- 15% methanol a, the eluant. The separation using this technique resolves

all the above-mentioned species (refs 2 arid 3). The nitric acid niolarity effects the
speed of elution of the HAN and AN primarily and this methanol concentration, primarily
the TEAN. This combination can be used to vary the elution times of the compo lents of
interests for a particular application.

As a result of recent progress in the field of SFC, this chromatographic procedure
was also reviewed. Conformity to stricter environmental and waste disposal regulations
have required a search for compatible techniques which would permit achievement of
analytical goals and compliance with these new directives. This me'thod has been
shown to provide the desired results and merits further investigation. The
chromatographic column used in this separation for all the species of interest was 10
cm x 1.0 rnm x 5 pm methyl deltabond with supercritical carbon dioxide plus 0.3 formic
acid as eluant. The sample of LP 1846 was extracted on celite with supercritical carbon
dioxide plus 0.3 formic acid prior to analysis (ref 10).

CONCLUSIONS

The final selection of analytical techniques for this program is still under inves-
tigation. The uses of titrimetry have been illustrated as well as the advantages of
chromatography. The development of the later has far-reaching utility and applicability
to many facets of this program. In conclusion, all of these techniques have their advan-
tages and disadvantages and must be weighed for the particular application.

The review of analytical methodologies which are applicable for monitoring the
storage of liquid propellants has led to the investigation of many diverse techniques.
Any or all of these have applicability for the particular requirements. This investigation
has endeavored to provide some incite into their advantages and disadvantages.



Table 1. Determination of nitric acid in spiked propellant
samples by nonaqueous titration

Sample %Acid added %Acid present Total % acid % Acid found

Ethanol 0.03 0.0 0.03 0.02
0.03 0.03 0.02
0.05 0.05 0.04
0.05 0.05 0.04
0.13 0.13 0.12
0.13 0.13 0.12

LP 1846 No. 1 0.0 0.08 0.08 0.09
0.0 0.07
0.04 0.12 0.10
0.04 0.12 0.11
0.05 0.13 0.14
0.06 0.14 0.17
0.14 0.22 0.21
0.16 0.24 0.22
0.33 0.41 0.43
0.33 0.41 0.41

LP 1846 No. 2 0.0 0.11 0.11 0.11
0.0 0.11
0.06 0.17 0.15
0.16 0.27 0.23
0.32 0.43 0.41

LP 1846 No. 3 0.0 0.10 0.10 0.11
0.09
0.11
0.11

0.03 0.13 0.13
0.13
0.13
0.12

0.07 0.17 0.17
0.16
0.17
0.16

LP 1846 No. 4 0.03 0.11 0.14 0.00*

Used 2.0 q scmplk resulting in complete loss in recovery; all other samples are 0.5 g.



Table 2. Determination of nitric acid in spiked propellant
samples by aqueous titrations

Sample % Acid %Acid % Nitric acid %Acid
Sample wgtg added present actual total found

DI H20 1.0 0.0 0.00 0.00 0.01
1.0 0.00 0.00 0.00 0.01
1.0 0.065 0.065 0.065 0.069

LP 1846 No.1 0.50 0.00 -- -- 0.06
0.47 .... 0.07
0.49 .... 0.06
0.99 .... 0.02

1.03 ab

1.97 .... 0.02
4.27 .... 0.04
4.31 .... 0.03
4.29 -- -- 0.04

LP 1846 No. 2 0.48 0.03 0.04 0.07 0.05
0.49 0.03 0.07 0.07
0.49 0.03 0.07 0.06
0.50 0.065 0.04 0.10 0.09
0.50 0.065 0.04 0.10 0.09
0.49 0.065 0.10 0.11
0.48 0.17 0.04 0.21 0.22
0.48 0.29 0.04 0.33 0.31
0.48 0.28 0.32 0.32
0.49 0.33 0.37 0.35

LP 1846 No. 3 1.02 0.06 0.04 0.10 a,b

LP 1846 No. 4 4.26 0.004 0.04 0.04 b

4.26 0.004 0.04 b

4.23 0.03 0.04 0.07 b

LP 1846 No. 5 28.65c 0.00 0.04 0.04 a,b

28.53C 0.03 0,07 a,b

28.61 0.00 0.04 0.03
28.53C 0.03 0.07 0.06

aNondiscernible end points using large samples.
bDeterminations using S- curves.
cTotal volume is 60 ml; all others are 50 ml.



Table 3. Effect of diluent blank in nitric acid study

Nitric acid
Diluent Titration Present Found

Methanol
HPLC grade Nonaqueous 0.00 0.01
Ethanol 1
200 proof Nonaqueous 0.00 0.01
Ethanol 2
200 proof Nonaqueous 0.00 0.12
DI water 1 Aqueous 0.00 0.01
DI water 2 Aqueous 0.00 0.03

Table 4. Comparison of aqueous versus nonaqueous titrations
for HAN and TEAN

Sample Aqueous (NaOH) Nonaqueous (TBAH)
% HAN % TEAN HAN % TEAN

LP-2 58.69 21.61 60.42 20.47
58.67 21.00 60.45 20.42
58.64 21.48 60.39 20.43
58.61 21.46
58.65 21.76
58.65+0.02 21.46+0.19 60.42+0.02 20.44+0.02

LP-1846-01 58.76 21.49 60.54 20.90
(LP 3) 58.85 21.51 60.60 20.95

58.81 21.76 60.64 20.82
58.71 22.18
58.84 22.35
5 8 .7 0 2 1 .7 5 _ 0 5 0 .
58.78+0.06 22.01+0.33 60.59+0.04 20.89+0.05

NOTE:

(1) All values are corrected for free nitric acid and ammonium nitrate.

(2) LP-2 is lot ABY87FS2C013.



Table 5. Comparison of aqueous and non aqueous synthetic
1846 HACL/TEACL titrations

Titration Percent Reaction Titrant Volume, mls
type Diluent acetone time, min HA. CL TEA. CL

Nonaqueous Ethanol 1.0 0.0 14.91 17.28
14.87 17.23
+0.02 +0.025

5.0 0.0 14.95 17.33
14.93 17.31
+0.03 +0.01

10.0 0.0 14.93 17.32
14.87 17.26
+0.03 +0.03

10.0 15.0 14.89 17.26
Actual concentration 60.8% HAN 19.2% TEAN
Experimental 61.4% HAN 21.6% TEAN

Aqueous Water 1.0 0.0 17.19 20.13
17.14 20.06
+0.025 +0.035

5.0 0.0 17.11 20.03
17.20 20.10
+0.045 +0.035

10.0 0.0 17.14 20.03
17.15 20.02
+0.005 +0.005

10.0 15.0 17.14 20.04
Actual concentration 60.8% HAN 19.2% TEAN
Experimental 58.5% HAN 21.9% TEAN

NOTE:

High purity hydroxylammonium hydrochloride and triethanolammonium hydrochloride
was used to prepare solutions containing the same amount of cations (hydroxylamine or
triethanolamine) which would be present in the nitrate solutions of LP 1846.
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Figure 1. Nitric acid titration, %/ recovery versus sample weight



0.5gms LP 1846-03-08 + 255jil 0.0103N4 HN103 in 50ml Ethanol

Titrant 0.0095N4 TBAH

Figure 2. Nonaqueous titration derivative curves with
optimized sample size

2.OOO2gma LP 1846-03-08 + 1.100al 0103N4 5103 in 50al ZtUaio2

Figure 3. Nonaqueous titration derivative curve with
concentrated sample
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